INTRODUCTION

Tumor-associated STSs (previously known as leiomyosarcoma) are a heterogeneous group of tumors which are both marked and lethal. G100 is a stable oli-oil-water emulsion of engineered liposomes. It is a highly potent TAA antigen, which has been utilized for intratumoral (IT) injections and as a vaccine against glioblastoma in clinical trials. This combination therapy has been shown to induce a tumor-specific immune response, which might suggest that IT G100 would induce a robust local and potentially systemic anti-tumor immune response. And by tuning the STS immunogenicity, inhibiting clinical signs of toxicity, and as a result, the clinical benefit was observed, and we are now exploring the possibility of this vaccine as the future clinical trials using other immunotherapeutics (such as immune checkpoint inhibitors in conjunction).

Methods

Injections (5T) patients who had a superficially injected lesion were treated with weekly IT G100 for 8-12 weeks. 12 patients received cutaneous radiation therapy 2 weeks after the last injection of G100. The tumors were graded according to the AJCC staging system. The injection site selection was based on the previous location and size of the tumor, as well as the location and size of the lesion. Tumor biopsies were performed to confirm the absence of residual tumor. The tumors were then irradiated with 15 Gy, and the injection sites were observed for 4 weeks. The patients were then observed for 4 weeks post-treatment. The patients were then observed for 4 weeks post-treatment.

Results

Patients had a median of 28 (1-120) prior lines of therapy and mean tumor size of 9.6 cm (2.7-53 cm). A grade 3 or higher dose-related reaction in the treated area occurred in all patients. A grade 1 or grade 2 dose-related reaction in the treated area occurred in all patients. The grade 3 or higher dose-related reaction in the treated area occurred in all patients. The grade 3 or higher dose-related reaction in the treated area occurred in all patients.

Conclusions

The TIL sequencing revealed that patient #1 had a high response in the G100+irradiation-treated tumors. The TIL sequencing identified higher enrichment of T cell infiltration in the G100+irradiation-treated tumors. The TIL sequencing identified higher enrichment of T cell infiltration in the G100+irradiation-treated tumors. The TIL sequencing identified higher enrichment of T cell infiltration in the G100+irradiation-treated tumors. The TIL sequencing identified higher enrichment of T cell infiltration in the G100+irradiation-treated tumors. The TIL sequencing identified higher enrichment of T cell infiltration in the G100+irradiation-treated tumors. The TIL sequencing identified higher enrichment of T cell infiltration in the G100+irradiation-treated tumors.