News

Stay current with the latest press releases and news from IsoPlexis and its IsoCode (SCBC) platform.

List of Press Releases

IsoPlexis Raises $13.5 Million in Series B Financing. The Series B financing round was led by Spring Mountain Capital, with participation by Connecticut Innovations, North Sound Ventures, and Ironwood Capital. "IsoPlexis' collaboration data and product development has continued to demonstrate both the need for the IsoPlexis technology and the potential to have a large impact on improving patient outcomes," said Gregory P. Ho, President of Spring Mountain Capital and IsoPlexis Board Director. "We are excited to continue our partnership with the IsoPlexis team to move the company forward."

Keytruda success a crowning moment for cancer immunotherapies, but are more on their way? The licensing deals, mergers and acquisitions, and excitement at events such as ASCO in the last couple of years, have of course come in combination with the impressive data that clinical trials are yielding, notes Sean Mackay, the chief executive of IsoPlexis. Its partners include the cancer immunotherapy specialist, Kite Pharma (Nasdaq: KITE). “The reason there is such a high potential is rooted in the data,” Mr Mackay says.

IsoPlexis will be participating in a panel discussion at the 2017 Bio International Convention in San Diego, CA. As part of the Emerging Therapies session, the panel covers Cell, Gene, and Tissue Therapies: Applying Key Lessons from the Evolution and Commercialization of Protein-Based Therapies

IsoPlexis will be presenting a poster at FOCiS 2017, entitled Single-Cell Proteomic Assessment of CD19 CAR-T Cells Reveals a Complex Landscape of Polyfunctional Antigen-Specific Response. Our single-cell multiplexed analysis revealed a marked heterogeneity of cytokine secretions and enhanced polyfunctional subsets in both CD4+ and CD8+ CAR-T pre-infusion products upon antigen-specific stimulation.

IsoPlexis to Participate in Nature Webcast on Making a Name in Cancer Immunotherapy. This webcast will feature a range of cancer immunotherapy innovations and explain how they are advancing progress within immuno-oncology. Technologies covered within the webcast will include IsoPlexis' IsoCode precision engineering platform for predictive cell response.

CAR T Cell Functionality Found to Correlate With Outcomes for Patients With NHL. "Through this research, we were able to highlight the important role a functionally versatile subpopulation of CAR T cells may play in the fight against cancer, leading to new ways to characterize and optimize T-cell products," Adrian Bot, MD, Kite’s vice president, Translational Medicine, said in a statement. "These insights were made possible by using the IsoPlexis technology."

IsoPlexis Research, in Collaboration with Oncology Specialist Kite Pharma, Offers Hope for Targeted CAR-T Treatment. US-based biotech firm IsoPlexis has presented findings from research using the company’s precision engineering platform, called IsoCode. The data show the potential to predict whether cancer patients will respond to CAR-T cell therapy prior to treatment, as well as to improve both pre-infusion potency testing and cell product design.

CAR T Cell Functionality Correlates With Outcomes, Offering a Biomarker for Response. The flexibility of CAR T cells to perform multiple functions was associated with the level of clinical activity elicited for patients with advanced non-Hodgkin’s lymphoma (NHL). For the biomarker assessment, PSI was determined by an analysis of pre-infusion CAR T cells using a single-cell, high-multiplexing ELISA system developed by IsoPlexis.

IsoPlexis and Kite Pharma Report Clinical Biomarker Data at AACR. IsoPlexis collaboration offers breakthrough insights into detecting and predicting patient response to t-cell therapy. Data captured by IsoCode, IsoPlexis' single-cell precision engineering platform, detected a statistically significant association between the potency of CAR-T cell product prior to treatment and objective response of cancer patients post-treatment. The results highlight the potential to predict whether cancer patients will respond to CAR-T cell therapy prior to treatment, as well as to improve both pre-infusion potency testing and cell product design.

Kite Announces AACR Presentation on IsoPlexis Collaboration. As described in the abstract of this clinical biomarkers presentation, the IsoCode platform uncovered that polyfunctional anti-CD19 CAR T cells determined by single-cell multiplex proteomics associated with clinical activity in patients with advanced non-Hodgkin's lymphoma. The single-cell Polyfunctional Strength Index (PSI) of patient CAR T cells, measured on the IsoCode platform, showed a statistically significant association with objective response to CAR T therapy.

Congratulations to IsoPlexis director and co-inventor Dr. James Heath, who was named President of the Institute for Systems Biology. "I am extremely honored to assume the position of president of ISB. It is also tremendously humbling to follow in Lee Hood’s footsteps. Lee is a giant of science, and he has changed the face of modern biology. Through scholarship, innovation, and an outstanding faculty, he has also built ISB into the world leader of systems biology. I can’t wait to begin working with ISB faculty to help build an ISB for the future."

IsoPlexis Obtains Exclusive License to Breakthrough Single-Cell Metabolomics Analysis Technologies From Dr. James Heath’s Lab at Caltech. Dr. James Heath’s new inventions enable detection of multiple types of metabolite information from single cells, a capability that aligns well with the IsoCode technology, previously referred to as the SCBC (single-cell barcode chip) solution and the foundation of IsoPlexis’ technologies.

IsoPlexis Adds Infectious Disease Pioneer Dr. David Ho to its Scientific Advisory Board. Dr. Ho is a recognized pioneer in the infectious disease area. He has authored more than 400 publications, was named Time magazine's 1996 Man of the Year for his pioneering work in AIDS research and is the recipient of 12 honorary doctorates for his scientific contributions.

Single-Cell Cytokine Profiling of Tumor-Infiltrating T Cells to Measure Patient Responses to Anti-PD-1 Therapy. Single-cell multiplexed cytokine profiling is capable of dissecting the full spectrum of immune functions associated with anti-tumor T cell immunity and more accurately measuring the function of TILs for predicting the response of patients receiving anti-PD-1 blocking therapy.

U.S. Senator Chris Murphy is Highlighting IsoPlexis of Branford, Connecticut, as "Murphy’s Innovator of the Month" for their Work Combating Cancer. "I'm proud to launch my series with IsoPlexis as the inaugural awardee. The folks at IsoPlexis are doing breakthrough work to make cancer treatments more effective and stop this deadly disease in its tracks—that's something to celebrate."

IsoPlexis Awarded NIH SBIR Grant to Develop Single-Cell Analysis Platform to Facilitate Cancer Immunotherapy. IsoPlexis was recently awarded a competitive Phase I Small Business Innovation Research (SBIR) grant from the National Cancer Institute of the National Institutes of Health to develop a multi-protein, single-cell analysis platform to facilitate personalized cancer immunotherapy response detection.

IsoPlexis Awarded NIH SBIR Grant to Develop Cellular Analysis Platform to Diagnose and Monitor Alzheimer's. IsoPlexis was recently awarded a competitive Phase I Small Business Innovation Research (SBIR) grant from the National Institute on Aging of the National Institutes of Health to develop a system to analyze trafficking leukocytes' highly multiplexed proteomic responses in patients with Alzheimer's disease.

Ironwood Capital Connecticut Announces Investment in IsoPlexis. Ironwood Capital Connecticut, a unit of Ironwood Capital, announced an investment in IsoPlexis, a venture-capital funded life sciences company developing a diagnostic platform to measure cellular immune response in patients.

$5.75 Million First Close Filed by IsoPlexis. $5.75 million was raised by IsoPlexis according to information filed with the SEC. The company has raised an estimated total of $11.25 million via private unregistered security offerings.

Kicking Genomic Profiling to the Curb: How Re-wiring the Phosphoproteome Can Explain Treatment Resistance in Glioma. In this issue of Cancer Cell, Wei et al. (2016) identify adaptive re-wiring of signaling nodes in glioma as major mechanisms of treatment resistance without genome-wide mutations.

A Different Route to Drug Resistance. Probing the biochemistry of individual brain cancer cells, a Ludwig-led team details an alternate mechanism for evading therapy.

Experimental Therapy for Brain Cancer Developed by UCLA and Caltech could Prevent Drug Resistance. The research was led by James Heath, co-director of the UCLA Jonsson Comprehensive Cancer Center’s Nanotechnology Program. Heath is the founder and a board member of IsoPlexis, a company that is seeking to commercialize the technologies used in the study.

CalTech, UCSD Team Uses Single-Cell Phosphoproteomics to Predict Cancer Drug Resistance. A team led by researchers at the California Institute of Technology and the University of California, San Diego, has used single-cell phosphoproteomics to detect changes in protein signaling linked to the development of drug resistance in glioblastoma.

NCI Alliance for Nanotechnology in Cancer: Phase II Program Summary. Researchers at this Center have applied single cell proteomics studies towards understanding patient responses to immunotherapy in clinical trials. This technology has been translated into the commercial sector for cancer immunotherapy applications by IsoPlexis, a company co-founded by former NSBCC postdoc Dr. Rong Fan (now on the faculty at Yale), and with scientific support from NSBCC Project Lead Dr. Toni Ribas.

IsoPlexis Appoints Academic and Industry Experts to Inaugural Scientific Advisory Board. IsoPlexis today announced the formation of a scientific advisory board (SAB) to help guide the company’s strategic direction in novel areas of immunology and oncology.

Yale Spinout IsoPlexis Raises $2.4M for "Cellular Fingerprinting" Tech that Analyzes Immune Response. More funding on the books for Yale spinout IsoPlexis: It just raised $2.4 million of a potential $3.8 million round, according to a regulatory filing.

New Microchip Technology Achieves 42-plexed Single-Cell Protein Analysis. A team of researchers at Yale University have invented a novel microdevice capable of detecting 42 unique immune effector proteins, a record number for a single-cell protein secretion assay; using the device, the team was also able to demonstrate that a phenotypically identical cell population still exhibits a large degree of intrinsic heterogeneity at the functional and cell behavior level.

Local Dream Team Develops Cancer Treatment That's Saving Lives. A dream team of Cal Tech and UCLA scientists and doctors have created a treatment that's giving hope to cancer patients who once had none. The medication was developed by chemistry professor James Heath and his lab at Cal Tech in Pasadena, who work day and night, to help UCLA oncologist Antoni Ribas try to cure his incurable cancer patients.

Spring Mountain Capital, LP Leads Investment in IsoPlexis Corporation. Spring Mountain Capital, LP, a New York-based investment management firm, announced today that its private equity group structured and led a growth equity investment in IsoPlexis Corporation.

Connecticut Innovations Invests $300,000 in IsoPlexis. Connecticut Innovations (CI), the leading source of financing and ongoing support for Connecticut's innovative, growing companies, today announced a $300,000 investment in IsoPlexis, a life science research tools company located in Branford, Conn.

Yale Student Entrepreneur Spinout IsoPlexis Raising $1.7 million for "Cellular Fingerprinting". The company has raised $1.3 million of a $1.7 million early-stage round, according to a regulatory filing.

Yale Startup IsoPlexis Raises $1.25M to Advance their Cell Decoding Micro-device. Yale bioscience tools company IsoPlexis recently closed on a $1.25 million Series A round with investments from Spring Mountain Capital, Connecticut Innovations and others.

Yale Startup Refines the Use of Cellular Fingerprinting. Yale entrepreneurs are upgrading the way scientists monitor the body's immune system, using the unique protein signature of the human cell itself.

New Single-Cell Measurement Techniques Reveal Significant Functional Heterogeneity. As analytical technologies have improved over the past decade, it has become clear that cells within the same tissue can differ greatly in how they are behaving at any given moment. Dr. Rong Fan's team was interested in quantifying the various proteins that individual cells secrete as a function of their health or disease status. 

Bioscience Clubhouse Highlights IsoPlexis. CEO Sean Mackay spoke about the market potential of the product, and how it could add to or improve on existing techniques used in the laboratory. The core of the patent-pending product, he explained, is its ability to perform analysis of isolated single immune cells and of proteins secreted over time. 

Immune-Cell Therapy could Strengthen Promising Melanoma Treatment. A new study of genetically modified immune cells by scientists from UCLA and the California Institute of Technology could help improve a promising treatment for melanoma, an often fatal form of skin cancer.

Get the Picture for Personalized Medicine: Microchip Platform Can Create Movie of the Immune System During the Course of Treatment. Dr. James Heath and his colleagues at the California Institute of Technology have developed an enabling microfluidic technology called the Single Cell Barcode Chip (SCBC). The SCBC is currently being used in a melanoma clinical trial where researchers are engineering patients’ immune systems to attack their own cancer. 

Improving Health Assessments with a Single Cell. Research led by scientists from the California Institute of Technology (Caltech) has shown that a new generation of microchips developed by the team can quickly and inexpensively assess immune function by examining biomarkers—proteins that can reflect the response of the immune system to disease—from single cells.